Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 20(3): e1011186, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483976

RESUMO

Egg activation, representing the critical oocyte-to-embryo transition, provokes meiosis completion, modification of the vitelline membrane to prevent polyspermy, and translation of maternally provided mRNAs. This transition is triggered by a calcium signal induced by spermatozoon fertilization in most animal species, but not in insects. In Drosophila melanogaster, mature oocytes remain arrested at metaphase-I of meiosis and the calcium-dependent activation occurs while the oocyte moves through the genital tract. Here, we discovered that the oenocytes of fruitfly females are required for egg activation. Oenocytes, cells specialized in lipid-metabolism, are located beneath the abdominal cuticle. In adult flies, they synthesize the fatty acids (FAs) that are the precursors of cuticular hydrocarbons (CHCs), including pheromones. The oenocyte-targeted knockdown of a set of FA-anabolic enzymes, involved in very-long-chain fatty acid (VLCFA) synthesis, leads to a defect in egg activation. Given that some but not all of the identified enzymes are required for CHC/pheromone biogenesis, this putative VLCFA-dependent remote control may rely on an as-yet unidentified CHC or may function in parallel to CHC biogenesis. Additionally, we discovered that the most posterior ventral oenocyte cluster is in close proximity to the uterus. Since oocytes dissected from females deficient in this FA-anabolic pathway can be activated in vitro, this regulatory loop likely operates upstream of the calcium trigger. To our knowledge, our findings provide the first evidence that a physiological extra-genital signal remotely controls egg activation. Moreover, our study highlights a potential metabolic link between pheromone-mediated partner recognition and egg activation.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Feminino , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Cálcio/metabolismo , Fertilização , Oócitos/metabolismo , Feromônios/genética , Feromônios/metabolismo
2.
Nat Commun ; 15(1): 1047, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316749

RESUMO

Chemosensory tissues exhibit significant between-species variability, yet the evolution of gene expression and cell types underlying this diversity remain poorly understood. To address these questions, we conducted transcriptomic analyses of five chemosensory tissues from six Drosophila species and integrated the findings with single-cell datasets. While stabilizing selection predominantly shapes chemosensory transcriptomes, thousands of genes in each tissue have evolved expression differences. Genes that have changed expression in one tissue have often changed in multiple other tissues but at different past epochs and are more likely to be cell type-specific than unchanged genes. Notably, chemosensory-related genes have undergone widespread expression changes, with numerous species-specific gains/losses including novel chemoreceptors expression patterns. Sex differences are also pervasive, including a D. melanogaster-specific excess of male-biased expression in sensory and muscle cells in its forelegs. Together, our analyses provide new insights for understanding evolutionary changes in chemosensory tissues at both global and individual gene levels.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Feminino , Masculino , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Filogenia , Evolução Molecular
3.
Nat Commun ; 8(1): 1305, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29101389

RESUMO

Piwi-interacting RNAs (piRNAs) and PIWI proteins play a crucial role in germ cells by repressing transposable elements and regulating gene expression. In Drosophila, maternal piRNAs are loaded into the embryo mostly bound to the PIWI protein Aubergine (Aub). Aub targets maternal mRNAs through incomplete base-pairing with piRNAs and can induce their destabilization in the somatic part of the embryo. Paradoxically, these Aub-dependent unstable mRNAs encode germ cell determinants that are selectively stabilized in the germ plasm. Here we show that piRNAs and Aub actively protect germ cell mRNAs in the germ plasm. Aub directly interacts with the germline-specific poly(A) polymerase Wispy, thus leading to mRNA polyadenylation and stabilization in the germ plasm. These results reveal a role for piRNAs in mRNA stabilization and identify Aub as an interactor of Wispy for mRNA polyadenylation. They further highlight the role of Aub and piRNAs in embryonic patterning through two opposite functions.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Polinucleotídeo Adenililtransferase/genética , Polinucleotídeo Adenililtransferase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Padronização Corporal/genética , Padronização Corporal/fisiologia , Drosophila melanogaster/embriologia , Células Germinativas Embrionárias/metabolismo , Feminino , Hibridização in Situ Fluorescente , Masculino , Metilação , Estabilidade de RNA
4.
J Lipid Res ; 56(11): 2094-101, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26353752

RESUMO

In terrestrial insects, cuticular hydrocarbons (CHCs) provide protection from desiccation. Specific CHCs can also act as pheromones, which are important for successful mating. Oenocytes are abdominal cells thought to act as specialized units for CHC biogenesis that consists of long-chain fatty acid (LCFA) synthesis, optional desaturation(s), elongation to very long-chain fatty acids (VLCFAs), and removal of the carboxyl group. By investigating CHC biogenesis in Drosophila melanogaster, we showed that VLCFA synthesis takes place only within the oenocytes. Conversely, several pathways, which may compensate for one another, can feed the oenocyte pool of LCFAs, suggesting that this step is a critical node for regulating CHC synthesis. Importantly, flies deficient in LCFA synthesis sacrificed their triacylglycerol stores while maintaining some CHC production. Moreover, pheromone production was lower in adult flies that emerged from larvae that were fed excess dietary lipids, and their mating success was lower. Further, we showed that pheromone production in the oenocytes depends on lipid metabolism in the fat tissue and that fatty acid transport protein, a bipartite acyl-CoA synthase (ACS)/FA transporter, likely acts through its ACS domain in the oenocyte pathway of CHC biogenesis. Our study highlights the importance of environmental and physiological inputs in regulating LCFA synthesis to eventually control sexual communication in a polyphagous animal.


Assuntos
Drosophila melanogaster/metabolismo , Metabolismo dos Lipídeos , Feromônios/biossíntese , Animais , Vias Biossintéticas , Proteínas de Drosophila/metabolismo , Corpo Adiposo/metabolismo , Ácido Graxo Sintase Tipo I/metabolismo , Ácidos Graxos/metabolismo , Feminino , Homeostase , Larva/metabolismo , Gotículas Lipídicas/metabolismo , Masculino , Receptores de Lipoproteínas/metabolismo , Triglicerídeos/metabolismo
5.
Insect Biochem Mol Biol ; 56: 36-49, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25484200

RESUMO

Mated Drosophila melanogaster females show a decrease in mating receptivity, enhanced ovogenesis, egg-laying and activation of juvenile hormone (JH) production. Components in the male seminal fluid, especially the sex peptide ACP70A stimulate these responses in females. Here we demonstrate that ACP70A is involved in the down-regulation of female sex pheromones and hydrocarbon (CHC) production. Drosophila G10 females which express Acp70A under the control of the vitellogenin gene yp1, produced fewer pheromones and CHCs. There was a dose-dependent relationship between the number of yp1-Acp70A alleles and the reduction of these compounds. Similarly, a decrease in CHCs and diene pheromones was observed in da > Acp70A flies that ubiquitously overexpress Acp70A. Quantitative-PCR experiments showed that the expression of Acp70A in G10 females was the same as in control males and 5 times lower than in da > Acp70A females. Three to four days after injection with 4.8 pmol ACP70A, females from two different strains, exhibited a significant decrease in CHC and pheromone levels. Similar phenotypes were observed in ACP70A injected flies whose ACP70A receptor expression was knocked-down by RNAi and in flies which overexpress ACP70A N-terminal domain. These results suggest that the action of ACP70A on CHCs could be a consequence of JH activation. Female flies exposed to a JH analog had reduced amounts of pheromones, whereas genetic ablation of the corpora allata or knock-down of the JH receptor Met, resulted in higher amounts of both CHCs and pheromonal dienes. Mating had negligible effects on CHC levels, however pheromone amounts were slightly reduced 3 and 4 days post copulation. The physiological significance of ACP70A on female pheromone synthesis is discussed.


Assuntos
Proteínas de Drosophila/farmacologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Hormônios Juvenis/metabolismo , Peptídeos/farmacologia , Animais , Copulação/fisiologia , Corpora Allata/metabolismo , Regulação para Baixo , Drosophila melanogaster/genética , Feminino , Hidrocarbonetos/metabolismo , Masculino , Fenótipo , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Reprodução/fisiologia , Atrativos Sexuais/metabolismo
6.
Insects ; 5(2): 439-58, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26462693

RESUMO

In insects, sexual behavior depends on chemical and non-chemical cues that might play an important role in sexual isolation. In this review, we present current knowledge about sexual behavior in the Drosophila genus. We describe courtship and signals involved in sexual communication, with a special focus on sex pheromones. We examine the role of cuticular hydrocarbons as sex pheromones, their implication in sexual isolation, and their evolution. Finally, we discuss the roles of male cuticular non-hydrocarbon pheromones that act after mating: cis-vaccenyl acetate, developing on its controversial role in courtship behavior and long-chain acetyldienylacetates and triacylglycerides, which act as anti-aphrodisiacs in mated females.

7.
Ecol Evol ; 2(10): 2527-36, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23145337

RESUMO

The dominant cuticular hydrocarbons (HC) in Drosophila simulans are 7-tricosene (7-T) and 7-pentacosene (7-P). The 7-T is the major HC in East Africa and in other continents. In West Africa, D. simulans is very rare and displays 7-P as the major compound. We studied three D. simulans strains from Egypt (Eg), Sao-Tome (ST), and Cameroon (Cam), with 7-T, intermediary or 7-P phenotypes. HC profiles of ST and Cam female differed slightly from corresponding male profiles; females had more 7-T and less 7-P. Varying temperature affected all HCs (even those with 27 and 29 carbons)-not just 7-T and 7-P; there was no clear relationship between HC phenotype and resistance to desiccation. We report reproductive isolation between Eg and ST and Eg and Cam (but not between ST and Cam), which is due to Eg and Cam female preferences for their own males. In conclusion, our findings do support divergence of D. simulans populations from West Africa for both pheromonal profile and mating preference.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...